A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support

نویسنده

  • James R. Luedtke
چکیده

We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with finite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to find provably good solutions in certain very special cases. Our approach uses both decomposition, to enable processing subproblems corresponding to one possible outcome at a time, and integer programming techniques, to combine the results of these subproblems to yield strong valid inequalities. Computational results on a chance-constrained formulation of a resource planning problem inspired by a call center staffing application indicate the approach works significantly better than both an existing mixed-integer programming formulation and a simple decomposition approach that does not use strong valid inequalities. We also demonstrate how the approach can be used to efficiently solve for a sequence of risk levels, as would be done when solving for the efficient frontier of risk and cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scenario grouping and decomposition algorithms for chance-constrained programs

A lower bound for a finite-scenario chance-constrained problem is given by the quantile value corresponding to the sorted optimal objective values of scenario subproblems. This quantile bound can be improved by grouping subsets of scenarios at the expense of larger subproblems. The quality of the bound depends on how the scenarios are grouped. We formulate a mixed-integer bilevel program that o...

متن کامل

Solving chance-constrained combinatorial problems to optimality

The aim of this paper is to provide new efficient methods for solving general chance-constrained integer linear programs to optimality. Valid linear inequalities are given for these problems. They are proved to characterize properly the set of solutions. They are based on a specific scenario, whose definition impacts strongly on the quality of the linear relaxation built. A branch-and-cut algor...

متن کامل

IIS Branch-and-Cut for Joint Chance-Constrained Programs with Random Technology Matrices

We present a new method for solving stochastic programs with joint chance constraints with random technology matrices and discretely distributed random data. The problem can be reformulated as a large-scale mixed 0-1 integer program. We derive a new class of optimality cuts called IIS cuts and apply them to our problem. The cuts are based on irreducibly infeasible subsets (IIS) of an LP defined...

متن کامل

Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange

Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...

متن کامل

IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation

0377-2217/$ see front matter 2010 Elsevier B.V. A doi:10.1016/j.ejor.2010.04.019 * Corresponding author. E-mail addresses: [email protected] (M.W. Ta Ntaimo). We present a new method for solving stochastic programs with joint chance constraints with random technology matrices and discretely distributed random data. The problem can be reformulated as a large-scale mixed 0–1 integer program. We de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 146  شماره 

صفحات  -

تاریخ انتشار 2014